A square matrix has an associated number that represents summary information about that matrix - a scalar we call the determinant. As we have seen, the determinant of **A** is denoted by $|\mathbf{A}|$.

The determinant provides useful information about the permissible operations on a matrix. If the determinant is equal to zero, then the matrix is *singular* and we cannot compute its inverse.

In multivariate statistics, we are most interested in computing the determinant of sigma, Σ , the variance-covariance matrix. This matrix is square and symmetric, which means that the matrix Σ and its transpose Σ' are identical. We have seen this matrix many times. Recall that correlations are standardized covariances, so the sample variance-covariance matrix Σ can be represented as:

$$\boldsymbol{\Sigma} = \begin{bmatrix} s_1^2 & s_1 s_2 r_{12} & \cdots & s_1 s_p r_{1p} \\ s_2 s_1 r_{21} & s_2^2 & \cdots & s_2 s_p r_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ s_p s_2 r_{p2} & s_p s_2 r_{p2} & \cdots & s_p^2 \end{bmatrix}$$
 where *s* is the standard deviation and *r* is the correlation.

As we noted earlier, the determinant of Σ is referred to as the *generalized variance*.

Characteristic Equation

Every square matrix has an associated *characteristic equation*, which is formed by subtracting a specific value, lambda: λ , from each diagonal element of the matrix, so that the determinant of the resulting matrix is equal to zero.

Consider a simple 2×2 matrix **A**. We would attempt to identify this specific value so that the following is true:

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

For a matrix of order p, there are potentially p different values for λ that will satisfy this equality. The values of λ that solve this equality are called the *eigenvalues* of the matrix.

Associated with each eigenvalue is a vector, here we will use \underline{v} , called the eigenvector. Eigenvectors satisfy the equation $\underline{A}\underline{v} = \lambda \underline{v}$.

If all eigenvalues are placed in the principal diagonal of a diagonal matrix \mathbf{L} , then the relation, $\mathbf{AV} = \mathbf{VL}$, also holds for matrices.

This equation provides the eigenstructure of **A**. We rely heavily on the eigenstructures in multivariate procedures.

¹ http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm

Example

We can consider an example using a correlation matrix, for simplification, but also for numerical efficiency. Recognize that correlations are standardized covariances, placing them all on the same scale (actually, they are considered to be scale free).

In this example, I will use SPSS matrix notation to complete all operations. Here we can ask SPSS to compute the eigenvalues and eigenvectors, then we can use them to verify the relations described above.

Consider the correlation matrix R :	compute R = {1, .5, .6; .5, 1, .7; .6, .7, 1}. print R.			
$\mathbf{R} = \begin{bmatrix} 1.00 & .50 & .60 \\ .50 & 1.00 & .70 \\ .60 & .70 & 1.00 \end{bmatrix}$	R 1.00000000 .50000000 .60000000 .50000000 1.00000000 .70000000 .60000000 .70000000 1.00000000			
Estimate the determinant of R :	compute dR = det(R). print dR.			
$ \mathbf{R} = \begin{vmatrix} 1.00 & .50 & .60 \\ .50 & 1.00 & .70 \\ .60 & .70 & 1.00 \end{vmatrix}$	DR .320000000			
In SPSS, we can use a shorthand tool to estimate (a) the eigenvectors of R (\underline{v} or V , normalized unit-length vectors) and (b) the eigenvalues (lambdas). In this case from our notation above for the eigenstructure, this matrix of eigenvectors is $\mathbf{V} = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$ and <u>Lambda</u> contains the eigenvalues: $\underline{\lambda} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$	<pre>call eigen(R,v,lambda). print v. print lambda. V 5434581644 .8059688345 .2346645720 5791257728 5623509647 .5902327777 6076730723 1848665203 7723715472 LAMBDA 2.203711293 .513510476 .282778231</pre>			

We can demonstrate the orthonormal property of the vectors by computing V'V. From the <i>Definitions</i> handout, we defined V as an orthogonal matrix if $V'V = I$. Here we see V'V has rank = 3, and being of full rank, has linearly independent rows and columns.	<pre>compute tvv = t(v)*v. print tvv. TVV 1.000000000 .000000000 .00000000</pre>
To continue, we can estimate a scaling for V . We do this by making a diagonal matrix with the square roots of <u>Lambda</u> , the eigenvalues.	Compute s = mdiag(sqrt(lambda)). Print s. S 1.484490247 .00000000 .00000000 .00000000 .716596453 .00000000 .00000000 .00000000 .531768964
Now we can rescale the vectors in V : $cL = VS = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 & 0 \\ 0 & \sqrt{\lambda_2} & 0 \\ 0 & 0 & \sqrt{\lambda_3} \end{bmatrix}$ $= \begin{bmatrix} e_{11}\sqrt{\lambda_1} & e_{12}\sqrt{\lambda_2} & e_{13}\sqrt{\lambda_3} \\ e_{21}\sqrt{\lambda_1} & e_{22}\sqrt{\lambda_2} & e_{23}\sqrt{\lambda_3} \\ e_{31}\sqrt{\lambda_1} & e_{32}\sqrt{\lambda_2} & e_{33}\sqrt{\lambda_3} \end{bmatrix}$	<pre>compute cL = v*s. Print cL. CL 8067583446 .5775544079 .1247873363 85970656144029787065 .3138674725 902084749113247469274107232173</pre>
Here we create the diagonal matrix of eigenvalues. This is L from our notation above for the eigenstructure. Recall that $cL = v^*s$, so $L = (cL)'(cL)$ = (VS)'(VS) = S'V'VS. Since $V'V = Ibecause V is orthonormal, thenS'V'VS = S'IS = S'S$. Since S is a diagonal matrix of elements $\sqrt{\lambda}$, S'S = a diagonal matrix of elements λ .	Compute L = t(cL)*cL. Print L. L 2.203711293 .00000000 .00000000 .00000000 .513510476 .000000000 .000000000 .00000000 .282778231
One thing to notice is the trace of this diagonal matrix: $tr(\mathbf{D}) = \sum a_{ii}$. This is <i>p</i> , the number of possible eigenvalues and eigenvectors. It is also the rank of A .	<pre>compute trL = trace(L). print trL. TRD</pre>

XX 7 1 (1 1 (*	$a = r^2 - aI + (aI)$				
we can reproduce the correlation	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
matrix from the CL matrix of rescaled	print r2.				
\mathbf{V} (the eigenvectors).	50				
	RZ 1 00000000	50000000	60000000		
$\mathbf{P} = (\mathbf{CI})(\mathbf{CI})'$	500000000	1 000000000	.00000000		
$\mathbf{K} = (\mathbf{C}\mathbf{L})(\mathbf{C}\mathbf{L})$. 500000000	700000000	1 00000000		
$= (\mathbf{VS})(\mathbf{VS})^{T} = \mathbf{VSS}^{T}\mathbf{V}^{T} = \mathbf{VLV}^{T}$.000000000	. /0000000	1.000000000		
This is a matrix of eigenvalues pre					
and post-multiplied by corresponding					
alements of the sizenvestore. With					
elements of the eigenvectors. with					
this information, we can reproduce the					
correlation matrix, since the					
correlations were initially					
decomposed into eigenvalues and					
eigenvectors.					
C					
Notice that $\mathbf{R} = \mathbf{V}\mathbf{L}\mathbf{V}'$					
This is the complete spectral					
decomposition of R .					
Using the correlation matrix, and the	compute esl = R*v.				
eigenvector matrix V, we can estimate	princ esi.				
-					
the left-hand side of the eigenstructure	ES1				
the left-hand side of the eigenstructure equation RV or AV .	ES1 -1.197624894	.413873440	.066358032		
the left-hand side of the eigenstructure equation RV or AV .	ES1 -1.197624894 -1.276226006	.413873440 288773112	.066358032 .166904981		
the left-hand side of the eigenstructure equation RV or AV .	ES1 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV .	ES1 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v'	.413873440 288773112 094930895 *L.	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v ⁷ print es2.	.413873440 288773112 094930895 *L.	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v [*] print es2.	.413873440 288773112 094930895 *L.	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL .	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v' print es2. ES2 -1.197624894	.413873440 288773112 094930895 *L.	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL .	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v ⁷ print es2. ES2 -1.197624894 -1.276226006	.413873440 288773112 094930895 *L. .413873440 - 288773112	.066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL .	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v ² print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL .	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v [*] print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL . We notice that AV = VL , the	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v [*] print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL . We notice that AV = VL , the complete eigenstructure of A , or R in	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v [*] print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL . We notice that AV = VL , the complete eigenstructure of A , or R in our case	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v ⁷ print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		
the left-hand side of the eigenstructure equation RV or AV . Using the eigenvector matrix V and the eigenvalue diagonal matrix L , we can estimate the right-hand side of the eigenstructure equation VL . We notice that AV = VL , the complete eigenstructure of A , or R in our case.	ES1 -1.197624894 -1.276226006 -1.339136012 compute es2 = v [*] print es2. ES2 -1.197624894 -1.276226006 -1.339136012	.413873440 288773112 094930895 *L. .413873440 288773112 094930895	.066358032 .166904981 218409860 .066358032 .166904981 218409860		