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A square matrix has an associated number that represents summary information about that matrix 

– a scalar we call the determinant. As we have seen, the determinant of A is denoted by |A|. 

 

The determinant provides useful information about the permissible operations on a matrix. If the 

determinant is equal to zero, then the matrix is singular and we cannot compute its inverse. 

 

In multivariate statistics, we are most interested in computing the determinant of sigma, Σ, the 

variance-covariance matrix. This matrix is square and symmetric, which means that the matrix Σ 

and its transpose Σ' are identical. We have seen this matrix many times. Recall that correlations 

are standardized covariances, so the sample variance-covariance matrix Σ can be represented as: 

 

Σ = 
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 where s is the standard deviation and r is the correlation. 

 

As we noted earlier, the determinant of Σ is referred to as the generalized variance. 

 

Characteristic Equation 

 

Every square matrix has an associated characteristic equation, which is formed by subtracting a 

specific value, lambda: λ, from each diagonal element of the matrix, so that the determinant of 

the resulting matrix is equal to zero. 

 

Consider a simple 2×2 matrix A. We would attempt to identify this specific value so that the 

following is true: 

 

|A- λI| = |
        
        

| = 0 

 

For a matrix of order p, there are potentially p different values for λ that will satisfy this equality. 

The values of λ that solve this equality are called the eigenvalues of the matrix. 

 

Associated with each eigenvalue is a vector, here we will use v, called the eigenvector. 

Eigenvectors satisfy the equation Av = λv. 

 

If all eigenvalues are placed in the principal diagonal of a diagonal matrix L, then the relation, 

AV = VL, also holds for matrices. 

 

This equation provides the eigenstructure of A. We rely heavily on the eigenstructures in 

multivariate procedures. 
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Example 

 

We can consider an example using a correlation matrix, for simplification, but also for numerical 

efficiency. Recognize that correlations are standardized covariances, placing them all on the 

same scale (actually, they are considered to be scale free). 

 

In this example, I will use SPSS matrix notation to complete all operations. Here we can ask 

SPSS to compute the eigenvalues and eigenvectors, then we can use them to verify the relations 

described above. 

 

 

Consider the correlation matrix R: 

 

R = [
          
          
          

] 

 

compute R = {1, .5, .6; .5, 1, .7; .6, .7, 1}. 

print R. 

 

R 

   1.000000000    .500000000    .600000000 

    .500000000   1.000000000    .700000000 

    .600000000    .700000000   1.000000000 

 

Estimate the determinant of R: 

 

|R| = |
          
          
          

| 

 

compute dR = det(R). 

print dR. 

 

DR 

   .3200000000 

 

In SPSS, we can use a shorthand tool 

to estimate 

(a) the eigenvectors of R (v or V, 

normalized unit-length vectors) and 

(b) the eigenvalues (lambdas). 

 

In this case from our notation above 

for the eigenstructure, this matrix of 

eigenvectors is  

V =[

         
         
         

] 

and Lambda contains the 

eigenvalues: 

λ = [
  
  
  

] 

 

call eigen(R,v,lambda). 

print v. 

print lambda. 

 

V 

  -.5434581644   .8059688345   .2346645720 

  -.5791257728  -.5623509647   .5902327777 

  -.6076730723  -.1848665203  -.7723715472 

 

LAMBDA 

   2.203711293 

    .513510476 

    .282778231 

 

 

  



 

We can demonstrate the orthonormal 

property of the vectors by computing 

V'V. From the Definitions handout, 

we defined V as an orthogonal matrix 

if V'V = I. Here we see V'V has rank 

= 3, and being of full rank, has 

linearly independent rows and 

columns. 

 

compute tvv = t(v)*v. 

print tvv. 

 

TVV 

   1.000000000    .000000000    .000000000 

    .000000000   1.000000000    .000000000 

    .000000000    .000000000   1.000000000 

 

To continue, we can estimate a scaling 

for V. We do this by making a 

diagonal matrix with the square roots 

of Lambda, the eigenvalues. 

Compute s = mdiag(sqrt(lambda)). 

Print s. 

 

S 

   1.484490247    .000000000    .000000000 

    .000000000    .716596453    .000000000 

    .000000000    .000000000    .531768964 

 

Now we can rescale the vectors in V: 

 

cL = VS = 

[

         
         
         

] [

√    

 √   

  √  

] 

=[

   √     √     √  

   √     √     √  

   √     √     √  

] 

 

compute cL = v*s. 

Print cL. 

 

CL 

  -.8067583446   .5775544079   .1247873363 

  -.8597065614  -.4029787065   .3138674725 

  -.9020847491  -.1324746927  -.4107232173 

 

Here we create the diagonal matrix of 

eigenvalues. This is L from our 

notation above for the eigenstructure. 

Recall that cL = v*s, so L = (cL)'(cL) 

= (VS)'(VS) = S'V'VS. Since V'V = I 

because V is orthonormal, then 

S'V'VS = S'IS = S'S. 

Since S is a diagonal matrix of 

elements √ , S'S = a diagonal matrix 

of elements λ. 

 

Compute L = t(cL)*cL. 

Print L. 

 

L 

   2.203711293    .000000000    .000000000 

    .000000000    .513510476    .000000000 

    .000000000    .000000000    .282778231 

 

One thing to notice is the trace of this 

diagonal matrix: tr(D) = ∑   . 
This is p, the number of possible 

eigenvalues and eigenvectors. It is 

also the rank of A. 

 

compute trL = trace(L). 

print trL. 

 

TRD 

   3.000000000 

 



 

We can reproduce the correlation 

matrix from the CL matrix of rescaled 

V (the eigenvectors). 

 

R = (CL)(CL)'  

    = (VS)(VS)' = VSS'V' = VLV' 

 

This is a matrix of eigenvalues pre 

and post-multiplied by corresponding 

elements of the eigenvectors. With 

this information, we can reproduce the 

correlation matrix, since the 

correlations were initially 

decomposed into eigenvalues and 

eigenvectors. 

 

Notice that R = VLV' 

 

This is the complete spectral 

decomposition of R. 

 

compute r2 = cL*t(cL). 

print r2. 

 

R2 

   1.000000000    .500000000    .600000000 

    .500000000   1.000000000    .700000000 

    .600000000    .700000000   1.000000000 

 

Using the correlation matrix, and the 

eigenvector matrix V, we can estimate 

the left-hand side of the eigenstructure 

equation RV or AV. 

compute es1 = R*v. 

print es1. 

 

ES1 

  -1.197624894    .413873440    .066358032 

  -1.276226006   -.288773112    .166904981 

  -1.339136012   -.094930895   -.218409860 

 

Using the eigenvector matrix V and 

the eigenvalue diagonal matrix L, we 

can estimate the right-hand side of the 

eigenstructure equation VL. 

compute es2 = v*L. 

print es2. 

 

ES2 

  -1.197624894    .413873440    .066358032 

  -1.276226006   -.288773112    .166904981 

  -1.339136012   -.094930895   -.218409860 

 

We notice that AV = VL, the 

complete eigenstructure of A, or R in 

our case. 

 

 

 

 

 

 


